Global attention-based LSTM for noisy power quality disturbance classification Online publication date: Tue, 06-Dec-2022
by Dar Hung Chiam; King Hann Lim; Kah Haw Law
International Journal of Systems, Control and Communications (IJSCC), Vol. 14, No. 1, 2023
Abstract: An increased dependency of digital control systems in the modern electrical network demand for a better quality of power signal. The occurrence of power quality disturbances (PQDs) in the network reduces the lifespan of power semiconductors and solid states switching devices. Global attention-based long short-term memory (LSTM) network is proposed to perform automatic time-series PQD detection and classification. Attention-based LSTM helps improve the noise immunity to extract salient features from noisy signal for PQD classification. The aim of this article is to analyse the performance of proposed attention-based LSTM under different noise conditions. Addictive white Gaussian noise is added to synthetic PQDs in different signal-to-noise ratio. These random generated noises are used to train and test the performance of proposed method, as well compared towards generic LSTM model. This work also shows the sensitivity of proposed method towards unknown noises that is not seen by the model during training phase.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Systems, Control and Communications (IJSCC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com