Energy-balance modelling of short channel single-GB thin-film transistors Online publication date: Wed, 14-Mar-2007
by Philip M. Walker, Hiroshi Mizuta
International Journal of Computational Science and Engineering (IJCSE), Vol. 2, No. 3/4, 2006
Abstract: In this paper, we have investigated the effect of a single Grain Boundary (GB) on the performance of decananometre-scale Thin Film Transistors (TFTs) by using the calibrated energy balance transport model and a continuous trap state distribution at the GB. We have found that the GB potential barrier suppresses the subthreshold slope and leakage current in devices, where the DIBL effect and punchthrough currents significantly degrade device performance. We have also found that the drift-diffusion model underestimates the drain current in the single-GB TFT and the velocity overshoot effect becomes significant in the short channel regime. Inclusion of trap-to-band and band-to-band tunnelling models into our simulations have shown that the subthreshold leakage current has a significant field dependence in the negative gate bias regime.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com