Improved Hamming-space-based similarity search algorithm
by Vikram Singh; Chandradeep Kumar
International Journal of Intelligent Information and Database Systems (IJIIDS), Vol. 16, No. 1, 2023

Abstract: In the modern context, similarity is driven by the quality-features of the data objects and steered by content preserving stimuli, as retrieval of relevant 'nearest neighbourhood' objects and the way similar objects are pursued. Current similarity searches in Hamming-space-based strategies finds all the data objects within a threshold Hamming-distance for a user query. Though, the numbers of computations for Hamming-distance and candidate generation are the key concerns from the several years. The Hamming-space paradigm extends the range of alternatives for an optimised search experience. A novel 'counting-based' similarity search strategy is proposed, with an a priori and improved Hamming-space estimation, e.g., optimised candidate generation and verification functions. The strategy adapts towards the lesser set of user query dimensions and subsequently constraints the Hamming-space computations with each data objects, driven by generated statistics. The extensive evaluation asserts that the proposed counting-based approach can be combined with any pigeonhole principle-based similarity search to further improve its performance.

Online publication date: Mon, 16-Jan-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Information and Database Systems (IJIIDS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com