Multi-dimensional classification of wind turbine spare parts in a multi-echelon inventory system Online publication date: Fri, 10-Mar-2023
by Bin Yan; Yifan Zhou; Zhaojun Li; Chaoqun Huang; Jingjing Liu
International Journal of Applied Decision Sciences (IJADS), Vol. 16, No. 2, 2023
Abstract: Optimising inventory management of spare parts is important for wind power companies to reduce operation and maintenance (O&M) costs. We summarise the indicators for wind turbine spare parts classification by analysing O&M management characteristics of the wind power industry. Spare parts of wind turbines are classified based on three dimensions: value, demand, and importance. The existing multi-dimensional spare parts classification methods discretise the indicator on each dimension. However, we use the K-means algorithm to classify spare parts based on normalised indicators. The proposed classification method significantly decreases the reliance on expertise and information loss caused by indicator discretisation. The proposed multi-dimensional classification method is validated using a practical case study of wind turbine spare parts classification, demonstrating that the proposed method can obtain reasonable classification that simultaneously stabilises the service level and reduces inventory costs.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Decision Sciences (IJADS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com