Medical personal protective equipment detection based on attention mechanism and multi-scale fusion Online publication date: Thu, 30-Mar-2023
by Jianlou Lou; Xiangyu Li; Guang Huo; Feng Liang; Zhaoyang Qu; Tianrui Lou; Ndagijimana Kwihangano Soleil
International Journal of Sensor Networks (IJSNET), Vol. 41, No. 3, 2023
Abstract: Deep neural networks (DNNs) have shown excellent effectiveness in object detection and greatly benefit people in various physical scenes. In this paper, we focus on a meaningful physical scene, medical personal protective equipment detection, where the performance degrades for two reasons: background information interference and different detection target scales. To solve the problems above, we propose two novel modules, a deformable and attention residual with 50 layers (DAR50) feature extraction module and a criss-cross feature pyramid network (CCFPN) feature fusion module. Concretely, the DAR50 is target morphology-aware and can enhance the feature information. The CCFPN raises the multi-scale detection performance by fusing the pixel information of the feature maps and then fusing the features of different stages. Combining the two modules, we construct a novel object detection network called attention and multi-scale fusion-based regions with convolution neural network (AMS R-CNN) features. Empirically, we prove the superiority of AMS R-CNN on a medical personal protective equipment detection dataset CPPE-5 (medical personal protective equipment) and The Visual Object Classes Challenge 2007 (VOC 2007) dataset compared with several state-of-the-art methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com