Multi-input multi-output sliding-mode control of LCL-based grid-connected modified Y-source inverter for power conditioning of photovoltaic generation Online publication date: Fri, 28-Apr-2023
by Seyede Tahere Hashemi; Mehdi Siahi; Majid Hosseinpour; Javad Olamaei
International Journal of Automation and Control (IJAAC), Vol. 17, No. 3, 2023
Abstract: A multi-input-multi-output (MIMO) sliding mode controller has been proposed in this paper in order to control a grid-connected photovoltaic (PV) power conditioning system with an LCL filter. In the proposed control approach, nonlinear-control method is used and simultaneous control of both the AC and DC inverter sides is done. Therefore, all the state variables are controlled simultaneously. The proposed sliding mode control (SMC) method provides several advantages, including zero grid current error, easy implementation, and robustness against parameter uncertainties of the investigated system. Hence, the resonance in the inverter output resulting from the LCL filter can be eliminated using SMC with no need for active damping techniques. Applying this approach can bring about maximum power point tracking (MPPT), control of the DC side, and injection of high-quality current into the grid at the AC side of the inverter. Various simulations have been conducted in MATLAB/Simulink for the proposed system.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automation and Control (IJAAC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com