Identification of relevant features influencing movie reviews using sentiment analysis
by Isha Gupta; Indranath Chatterjee; Neha Gupta
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 15, No. 2, 2023

Abstract: Sentiment analysis is a systematic text mining research that examines individuals' behaviour, approach, and viewpoint. This paper analyses viewers' sentiments towards the movies released during the pandemic. This study employs the sentiment analysis techniques on movie reviews' accessed in real-time from internet movie database (IMDb). The paper's main objective is to identify the potential words that contribute to the biases of the reviews and influence overall viewers. The proposed methodology has employed valence aware dictionary for sentiment reasoning based on sentiment analysis of overall reviews, followed by application to various movie genres. Finally, we have applied Pearson's correlation analysis to find the association between the words among the genres. The paper also calculates the sentiment scores of reviews using different sentiment analysis models. Our results showed a minimum of 17% features common genre-wise. It reveals sets of most distinct influential words, which may be vital for understanding the nature of the language used for a particular kind of movie.

Online publication date: Fri, 09-Jun-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com