Machine learning-based-HR appraisal system (ML-APS)
by Madapuri Rudra Kumar; Vinit Kumar Gunjan; Mohd Dilshad Ansari
International Journal of Applied Management Science (IJAMS), Vol. 15, No. 2, 2023

Abstract: Appraisal systems hold critical importance in organisational human resource management. The way HR departments have developed over the period to the recent trends of AI-based human resource management systems and practices reflect on the emerging importance of effective HRM. In this present work, one of the key functionalities of the HRM process, the Appraisal system, is focused upon. This work presents a comprehensive model of appraisal system that relies on the machine learning solution for predicting evaluating the appraisal score. The developed model is trained with SVM classifier and is tested with 600+ records for evaluation. The precision and recall values indicated by the test results reflect that the model is potential and if more effectively pursued in terms of training and incorporating more in-depth analysis, the model can be a sustainable solution for human resource appraisal system.

Online publication date: Mon, 26-Jun-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Management Science (IJAMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com