A constraint programming approach for quantitative frequent pattern mining Online publication date: Tue, 22-Aug-2023
by Mohammed El Amine Laghzaoui; Yahia Lebbah
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 15, No. 3, 2023
Abstract: Itemset mining is the first pattern mining problem studied in the literature. Most of the itemset mining studies have considered only Boolean datasets, where each transaction can contain or not items. In practical applications, items appear in some transactions with some quantities. In this paper, we propose an extension of the current efficient constraint programming approach for itemset mining, to take into account quantitative items in order to find patterns with their quantities directly on the original quantitative dataset. The contribution is two folds. Firstly, we facilitate the modelling task of mining problems through a new constraint. Secondly, we propose a new filtering algorithm to handle the frequency and closeness constraints. Experiments performed on standard benchmark datasets with numerous mining constraints show that our approach enables to find more informative quantitative patterns, which are better in running time than quantitative approaches based on classical Boolean patterns.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com