Research on long- and short-term music preference recommendation method integrating music emotional attention Online publication date: Wed, 04-Oct-2023
by Yan Yang
International Journal of Networking and Virtual Organisations (IJNVO), Vol. 28, No. 2/3/4, 2023
Abstract: In order to improve the effect of user music personalised recommendation, a hybrid music personalised recommendation model based on attention mechanism and multi-layer LSTM is proposed from the perspective of user music emotion and behaviour data. Using multi-layer LSTM to mine users' long-term and short-term music preferences, the model can analyse users' music emotional attributes in combination with attention mechanism. The research results show that the recommendation accuracy of the AM-LSTPM model is 97.86%, the recall rate is 98.91%, and the NDCG@10 values of the model on the two datasets are 0.5771 and 0.5437, which can effectively provide users with targeted personalised music recommendation services. The research, based on the modelling of users' long-term and short-term music preferences and integrating users' music emotional attention analysis, provide users with high-quality targeted music recommendation services, and have important value in promoting the improvement of music streaming media service quality.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Networking and Virtual Organisations (IJNVO):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com