Examining the role of likes in follower network evolution based on a dynamic panel data model Online publication date: Mon, 04-Dec-2023
by Tao Wang; Shuang Fu; Zhiyi Wu
International Journal of Computational Science and Engineering (IJCSE), Vol. 26, No. 6, 2023
Abstract: Posting product recommendation articles by content creators from the consumer group in social shopping communities has become an effective way to connect consumers to products. Content creators with larger follower counts have higher levels of influence. However, little is known about the causes of the evolution of their follower networks. Therefore, we examined the impact of social media likes that content creators received on the follower count and the moderating effect of the previous follower count on the role of likes. We achieve that by crawling real data from China's leading social shopping community. We empirically tested a dynamic panel data model and found that more likes are positively associated with the growth of the follower network size, while the previous follower count negatively moderates this effect. These findings have implications for researchers seeking to understand the antecedents of follower network evolution and for practitioners seeking to attract more followers.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com