A series arc fault diagnosis method based on random forest model Online publication date: Mon, 18-Dec-2023
by Qianhong Hou; Yongxin Chou; Jicheng Liu; Haifeng Mao; Mingda Lou
International Journal of Modelling, Identification and Control (IJMIC), Vol. 44, No. 1, 2024
Abstract: The current of series arc fault is too weak to be detected by the circuit breaker, which is one of the causes of electrical fire. Therefore, an intelligent diagnosis method of series arc fault based on random forest (RF) is proposed in this study. Firstly, the high-frequency current signals of six kinds of loads are collected as experimental data. Then, 13 features are extracted from time domain and frequency domain, and the feature is reduced to four dimensions by principal component analysis (PCA). Finally, a classifier for series arc fault diagnosis is designed using RF. The experimental data in this study are collected by the low-voltage AC series arc fault data acquisition device developed by ourselves. The identification accuracy of series arc fault is 99.95 ± 0.03%. Compared with the existing series arc fault diagnosis methods, it has higher recognition performance.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com