A new secant-like quasi-Newton method for unconstrained optimisation Online publication date: Fri, 12-Jan-2024
by Issam A.R. Moghrabi
International Journal of Operational Research (IJOR), Vol. 49, No. 1, 2024
Abstract: The secant equation traditionally constitutes the basis of quasi-Newton methods, as the updated Hessian approximations satisfy the equation on each iteration. Modified versions of the secant relation have recently been the focus of several papers with encouraging outcomes. This paper continues with that idea where a secant-like modification that utilises nonlinear quantities in constructing the Hessian (or its inverse) approximation updates is derived. The technique takes advantage of data readily computed from the two most recent steps. Thus, it offers a substitute to the secant equation to produce better Hessian approximations that result in accelerated convergence to the objective function minimiser. The reported results provide adequate evidence to suggest that the proposed method is promising and deserves attention.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Operational Research (IJOR):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com