Computational modelling of NOx emissions from biodiesel combustion
by Wenqiao Yuan, Alan C. Hansen, Qin Zhang
International Journal of Vehicle Design (IJVD), Vol. 45, No. 1/2, 2007

Abstract: A detailed numerical spray atomisation, ignition, combustion and NOx formation model was developed for direct injection diesel engines using KIVA-3V code that could be applied to biodiesel fuels and this model was used to investigate the NOx emissions mechanisms of biodiesel compared with diesel fuel. In addition, computational modelling was applied to evaluate strategies for reducing NOx emissions from biodiesel combustion. The physical and thermodynamic properties of biodiesel used in the model were based on fatty acid composition. The model was verified with experimental data from an engine fuelled with diesel fuel, soyabean methyl ester, Yellow Grease Methyl Ester (YGME) and genetically modified soyabean methyl ester. Strategies for reducing NOx emissions from biodiesel combustion were evaluated with the aid of the model. Increasing spray cone angle, retarding start of injection, applying Exhaust Gas Recirculation (EGR) and charge air cooling were all effective approaches to reducing NOx emissions from biodiesel fuel.

Online publication date: Fri, 11-May-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com