The influence of nano-particles on microstructural development at the interface of Sn3.5Ag-solder and Cu-substrate
by D.C. Lin, T.S. Srivatsan, G-X. Wang, R. Kovacevic
International Journal of Nanomanufacturing (IJNM), Vol. 1, No. 3, 2007

Abstract: Preliminary experimental results have shown that an unexpected large needle-like phase Ag3Sn grows from the solder/substrate interface and large polygon-like Sn-Cu intermetallic compounds are present in the region, which is close to the interface when using lead-free binary Sn3.5Ag solder alloy. This paper summarises the efforts made to prevent the formation of these deleterious phases. An addition of 0.25 wt% of either copper nano-particles or nickel nano-particles was found to effectively avoid the formation of large Ag3Sn phase and to modify the solder matrix through a random dispersion of the in-situ intermetallic compounds Cu6Sn5 or Sn4Ni3. The mechanism involved in influencing the interfacial structure is quite different for copper and nickel nano-particles. The addition of copper nano-particles stimulates the formation of the Sn-Cu compound Cu6Sn5 at the solder/substrate interface, while the nickel nano-particles promotes the formation of Sn-Cu-Ni-Ag compound to replace the regular scallop-like Cu6Sn5 having a round morphology.

Online publication date: Fri, 11-May-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com