Fingerprint multiple-class classifier: performance evaluation on known and unknown fingerprint spoofing materials
by Divine Senanu Ametefe; Suzi Seroja Sarnin; Darmawaty Mohd Ali; Dah B. John; Abdulmalik Adozuka Aliu
International Journal of Biometrics (IJBM), Vol. 16, No. 2, 2024

Abstract: Fingerprint recognition is a popular and reliable biometric technology used in many security-sensitive applications. However, the use of fake fingerprints made from ubiquitous spoofing materials poses a significant threat to security systems. While several studies have proposed binary classifiers to detect fingerprint presentation attacks, relatively few have explored the effectiveness of multiple-class classifiers in detecting known and unknown spoofs. In this study, we evaluated the efficacy of multiple-class classifiers using deep transfer learning to detect presentation attacks made with different spoofing materials. Our experiments on the LivDet 2009-2015 datasets showed that while a classifier model developed without data augmentation performed better on known spoofs, it showed poor performance on cross-material detection of all seven fingerprint spoofing materials. These results suggest that modelling a multiple-class classifier is not an efficient approach for detecting cross-material presentation attacks in fingerprint recognition systems.

Online publication date: Fri, 01-Mar-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biometrics (IJBM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com