Robust learning tracking control design for soft actuators
by Adnan Alamili; Ali Al-Ghanimi; Mukhalad Al-Nasrawi
International Journal of Mechatronics and Manufacturing Systems (IJMMS), Vol. 16, No. 4, 2023

Abstract: This paper proposes a recursive sliding-mode control strategy for motion-tracking control of ionic polymer-metal composite soft actuator systems. The suggested controller is distinctive in that it can continuously modify the closed-loop response to maintain system stability. Accordingly, Lyapunov criteria have been used to establish the stability of the provided control technique. Additionally, since controller design does not require any prior knowledge of parameter uncertainties or system hysteresis, it is appropriate for ionic polymer-metal composites since its model changes depending on working conditions. Simulation investigations are conducted to validate the performance of the developed controller. The results demonstrate superior performance compared to the conventional sliding mode control approach.

Online publication date: Thu, 14-Mar-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mechatronics and Manufacturing Systems (IJMMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com