Identifying illegal actions method of basketball players based on improved genetic algorithm
by Zhenyu Zhu
International Journal of Biometrics (IJBM), Vol. 16, No. 5, 2024

Abstract: In order to reduce the time required for identifying athlete violations and improve the recognition rate, this paper proposes a basketball player violation recognition method based on an improved genetic algorithm. Firstly, the surface electromyographic signals of athletes are collected using a wireless sEMG signal acquisition device. Secondly, the location of signal acquisition is determined and the time-domain features of the signal is extracted. Then, a composite filter is used to denoise the signal. Finally, the genetic algorithm is improved by combining support vector machines to design an action recognition classifier, which outputs the results of illegal action recognition through the recognition classifier. Through experiments, it can be seen that this method can effectively improve the recognition rate by 9.44%, and within 0.5 minutes, the recognition effect of basketball players' illegal actions is good.

Online publication date: Mon, 02-Sep-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biometrics (IJBM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com