Review on sentiment analysis of movie reviews using machine learning techniques based on data available on Twitter
by Dharmendra Dangi; Amit Bhagat; Jeetendra Kumar Gupta
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 15, No. 5, 2024

Abstract: Opinion mining or sentiment analysis is the study to extract useful information from the given datasets like tweets on Twitter or opinions of people on other social blogs or portals related to a particular topic. Sentiment analysis aims to predict the type of opinion like positive, somewhat positive, or negative somewhat negative and neutral. Sentiment analysis based on machine learning techniques has more importance as it gives better outputs. The study of these kinds of datasets with the help of machine learning techniques can be used in many different forms like to make predictions, to study the patterns, to analyse the sentiments, to study the reviews the movies, to predict the way stock market may behave. Data available on microblogging sites like Twitter have certain hidden indications which are useful to solve many research problems. This article is the review article that will highlight some recent studies in the field of sentiment analysis based on the movie review available on websites like Twitter.

Online publication date: Tue, 03-Sep-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com