Design of an on-chip microscale nanoassembly system Online publication date: Fri, 25-Apr-2008
by Jason J. Gorman, Yong-Sik Kim, Andras E. Vladar, Nicholas G. Dagalakis
International Journal of Nanomanufacturing (IJNM), Vol. 1, No. 6, 2007
Abstract: A microscale nanoassembly system has been designed for the fabrication of nanodevices and in situ electromechanical characterisation of nanostructures. This system consists of four Microelectromechanical Systems (MEMS)-based nanomanipulators positioned around a centrally located port for introducing nanostructure samples. Each nanomanipulator is composed of an XYZ nanopositioning mechanism with an attached nanoprobe for interacting with the nanostructures. By simultaneously controlling the position of each of these nanoprobes, they can be used to cooperatively assemble complex structures. The static and dynamic motion characteristics of a prototype nanomanipulator have been measured, providing a non-linear calibration of the quasi-static input–output behaviour, as well as values for the system bandwidth and structural natural frequencies. Important operational issues including proposed manipulation schemes, precision motion control and integration with a Scanning Electron Microscope/Focused Ion Beam (SEM/FIB) instrument are also discussed.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com