Scoring and summarising gene product clusters using the Gene Ontology
by Spiridon C. Denaxas, Christos Tjortjis
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 2, No. 3, 2008

Abstract: We propose an approach for quantifying the biological relatedness between gene products, based on their properties, and measure their similarities using exclusively statistical NLP techniques and Gene Ontology (GO) annotations. We also present a novel similarity figure of merit, based on the vector space model, which assesses gene expression analysis results and scores gene product clusters' biological coherency, making sole use of their annotation terms and textual descriptions. We define query profiles which rapidly detect a gene product cluster's dominant biological properties. Experimental results validate our approach, and illustrate a strong correlation between our coherency score and gene expression patterns.

Online publication date: Mon, 29-Sep-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com