Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information
by Hua-Liang Wei, Stephen A. Billings
International Journal of Modelling, Identification and Control (IJMIC), Vol. 3, No. 4, 2008

Abstract: Model structure selection plays a key role in non-linear system identification. The first step in non-linear system identification is to determine which model terms should be included in the model. Once significant model terms have been determined, a model selection criterion can then be applied to select a suitable model subset. The well known Orthogonal Least Squares (OLS) type algorithms are one of the most efficient and commonly used techniques for model structure selection. However, it has been observed that the OLS type algorithms may occasionally select incorrect model terms or yield a redundant model subset in the presence of particular noise structures or input signals. A very efficient Integrated Forward Orthogonal Search (IFOS) algorithm, which is assisted by the squared correlation and mutual information, and which incorporates a Generalised Cross-Validation (GCV) criterion and hypothesis tests, is introduced to overcome these limitations in model structure selection.

Online publication date: Mon, 29-Sep-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com