Improved genetic algorithm for optimal design of fuzzy classifier
by P. Ganesh Kumar, D. Devaraj
International Journal of Computer Applications in Technology (IJCAT), Vol. 35, No. 2/3/4, 2009

Abstract: One of the important issues in the design of fuzzy classifier is the formation of fuzzy if-then rules and the membership functions. This paper presents a Genetic Algorithm (GA) approach to obtain the optimal rule-set and the membership function. To develop the fuzzy system the membership functions and rule-set are encoded into the chromosome and evolved simultaneously using GA. Advanced genetic operators are applied to improve the performance of the GA in designing the fuzzy classifier. The performance of the proposed approach is demonstrated through development of fuzzy classifier for Iris, Wine and tcpdump data. From the simulation study, it is found that the improved GA produces a fuzzy classifier which has minimum number of rules and high classification accuracy. Statistical analysis of the test results shows the superiority of the proposed algorithm over the existing methods.

Online publication date: Sat, 20-Jun-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com