Scalable autonic processing systems Online publication date: Wed, 16-Jul-2003
by Adnan Shaout, Najamuz Zaman, Taisir Eldos
International Journal of Computer Applications in Technology (IJCAT), Vol. 16, No. 1, 2003
Abstract: The number of automotive functions that are controlled by computers is rapidly increasing. In the past, these functions were confined to stand-alone control units, such as the engine or ABS brake controller. In modern cars, the data exchange between different controllers has grown to a level where one or several networks are necessary to meet the communication demand [1]. Currently, automotive electronics processing is distributed in variety of functions like power train, air bag, climate control, suspension, etc. The purpose of this paper is to review related work through two state-of-the-art models, and propose a scalable design using parallel processing and fault tolerance techniques (excluding the functions of power train and transmission control electronics). The integration is based on the logical bisection of vehicle in four symmetric regions, which is critical for hardware, software, fault tolerance and ease of serviceability design. The proposed design can be implemented on any vehicle without going through the iterative system and module design cycles.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com