Robust weighted regression as a downscaling tool in temperature projections Online publication date: Fri, 22-Oct-2010
by Manish Kumar Goyal, C.S.P. Ojha
International Journal of Global Warming (IJGW), Vol. 2, No. 3, 2010
Abstract: Downscaling models are developed using robust version of locally weighted regression smoothing scatter plots technique (LOWESS) regression approach for obtaining projections of mean monthly maximum and minimum temperatures (Tmax and Tmin) to Pichola watershed in an arid region in India. Variable Importance in the Projection (VIP) score from Partial Least Squares (PLSs) regression is used to select the variables. A comparison is also done with LOWESS regression approach. The results show that an increasing trend is observed for Tmax and Tmin for A1B, A2 and Bl scenarios whereas no trend is discerned with the COMMIT.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com