Designing fractional-order PIλDμ controller using differential harmony search algorithm
by Gourab Ghosh Roy, Prithwish Chakraborty, Swagatam Das
International Journal of Bio-Inspired Computation (IJBIC), Vol. 2, No. 5, 2010

Abstract: Harmony Search (HS) has recently emerged as an efficient metaheuristic algorithm that draws inspiration from the music improvisation process. This article describes the design of fractional-order proportional-integral-derivative (FOPID) controllers, using a newly developed variant of HS, known as differential harmony search (DHS). Design of FOPID controllers is more complex than that of conventional integer-order PID controller since the latter involves only three parameters while the former involves five parameters to tune. Controller synthesis is based on user specifications like peak overshoot and, rise time; which are used to formulate a single objective optimisation problem. Tustin operator-based continuous fraction expansion (CFE) scheme was used to digitally realise fractional-order closed loop transfer function of the designed plant-controller setup. Experimental results of comparison between DHS and a few established optimisation techniques [particle swarm optimisation (PSO) and genetic algorithm (GA)] over different instantiations of the design problem reflect the superiority of the proposed methodology.

Online publication date: Mon, 25-Oct-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com