Development of neural network-based models to predict mechanical properties of hot dip galvanised steel coils
by Ana Gonzalez-Marcos, Fernando Alba-Elias, Manuel Castejon-Limas, Joaquin Ordieres-Mere
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 3, No. 4, 2011

Abstract: In the industrial arena, artificial neural networks are among the most significant techniques in system modelling because of their efficiency and simplicity. In this paper, we present an application of artificial neural networks, along with other techniques stemming from data mining, to model the yield strength, tensile strength, elongation, strain hardening coefficient and the Lankford's anisotropy coefficient of galvanised steel coils, according to the manufacturing process data. In particular, we propose the use of these models to improve the current control systems of hot-dip galvanising lines since an open loop control strategy must be adopted because the mechanical properties of hot-dip galvanising coils are not directly measurable.

Online publication date: Thu, 26-Feb-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com