Minimising value-at-risk in a portfolio optimisation problem using a multi-objective genetic algorithm
by Eva Alfaro-Cid; J. Samuel Baixauli-Soler; Matilde O. Fernandez-Blanco
International Journal of Risk Assessment and Management (IJRAM), Vol. 15, No. 5/6, 2011

Abstract: In this paper, we develop a general framework for market risk optimisation that focuses on VaR. The reason for this choice is the complexity and problems associated with risk return optimisation (non-convex and non-differential objective function). Our purpose is to obtain VaR efficient frontiers using a multi-objective genetic algorithm (GA) and to show the potential utility of the algorithm to obtain efficient portfolios when the risk measure does not allow calculating an optimal solution. Furthermore, we measure differences between VaR efficient frontiers and variance efficient frontiers in VaR-return space and we evaluate out-sample capacity of portfolios on both bullish and bearish markets. The results indicate the reliability of VaR-efficient portfolios on both bullish and bearish markets and a significant improvement over Markowitz efficient portfolios in the VaR-return space. The improvement decreases as the portfolios level of risk increases. In this particular case, efficient portfolios do not depend on the risk measure minimised.

Online publication date: Sat, 28-Feb-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Risk Assessment and Management (IJRAM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com