Development of a 4D dosimetry simulation system in radiotherapy Online publication date: Fri, 12-Dec-2014
by Q. Jackie Wu; Danthai Thongphiew; Zhiheng Wang; Christopher Willett; Lawrence Marks; Fang-Fang Yin
International Journal of Biomedical Engineering and Technology (IJBET), Vol. 8, No. 2/3, 2012
Abstract: 4D CT image sets are used to encode patient-organ motion and to calculate the dose delivered during each respiratory phase. The dose-per-phase is summarised to the total dose via deformable registration. The system incorporates the actual beam parameters and synchronises the beam motion (e.g., gantry/MLC motion of the DARC and MLC motion of the IMRT) to the patient's respiratory motion. Furthermore, this system incorporates different treatment techniques such as 3D conformal (3DCRT), dynamic arc (DARC), and Intensity-Modulated Radiation Therapy (IMRT), thus allows better understanding of organ motion effect on dose delivery, treatment techniques and corresponding optimal margins.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomedical Engineering and Technology (IJBET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com