Discriminant analysis in pairwise kernel learning for SVM classification Online publication date: Fri, 05-Dec-2014
by Hao Jiang; Wai-Ki Ching; Delin Chu
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 8, No. 3/4, 2012
Abstract: Multiple kernel learning arises when different types of kernels are employed simultaneously. In particular, in the situation that the data are from heterogeneous sources. In this study, we developed a new framework for determining the coefficients in learning pairwise kernels for classification in Support Vector Machines (SVM). The effectiveness of the proposed method was then demonstrated through the prediction of self-renewal and pluripotency mESCs stemness membership genes. It was also tested on the power of discrimination in DNA repair gene data. The promising formulation in learning coefficients for pairwise kernel learning was shown via experimental evaluation. This may provide a novel perspective for kernel learning in future applications.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com