Predicting the secondary structure of proteins using machine learning algorithms
by Rui Camacho; Rita Ferreira; Natacha Rosa; Vânia Guimarães; Nuno A. Fonseca; Vítor Santos Costa; Miguel De Sousa; Alexandre Magalhães
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 6, No. 6, 2012

Abstract: The functions of proteins in living organisms are related to their 3-D structure, which is known to be ultimately determined by their linear sequence of amino acids that together form these macromolecules. It is, therefore, of great importance to be able to understand and predict how the protein 3D- structure arises from a particular linear sequence of amino acids. In this paper we report the application of Machine Learning methods to predict, with high values of accuracy, the secondary structure of proteins, namely α-helices and ß-sheets, which are intermediate levels of the local structure.

Online publication date: Wed, 17-Dec-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com