Approximate search algorithm for aggregate k-nearest neighbour queries on remote spatial databases
by Hideki Sato; Ryoichi Narita
International Journal of Knowledge and Web Intelligence (IJKWI), Vol. 4, No. 1, 2013

Abstract: Searching Aggregate k-Nearest Neighbour (k-ANN) queries on remote spatial databases suffers from a large amount of communication. In order to overcome the difficulty, RQP-M algorithm for efficiently searching k-ANN query results is proposed in this paper. It refines query results originally searched by RQP-S with subsequent k-NN queries, whose query points are chosen among vertices of a regular polygon inscribed in a circle searched previously. Experimental results show that precision of sum k-NN query results is over 0.95 and Number of Requests (NOR) is at most 4.0. On the other hand, precision of max k-NN query results is over 0.95 and NOR is at most 5.6. RQP-M brings 0.04-0.20 increase in PRECISION of sum k-NN query results and over 0.40 increase in that of max k-NN query results, respectively, in comparison with RQP-S.

Online publication date: Mon, 18-Mar-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge and Web Intelligence (IJKWI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com