Detecting community structure in bipartite networks based on matrix factorisation Online publication date: Thu, 16-Oct-2014
by Bo-Lun Chen; Ling Chen; Sheng-Rong Zou; Xiu-Lian Xu
International Journal of Wireless and Mobile Computing (IJWMC), Vol. 6, No. 6, 2013
Abstract: Community detection in bipartite network is very important in the research on the theory and applications of complex network analysis. In this paper, an algorithm for detecting community structure in bipartite networks based on matrix factorisation is presented. The algorithm first partitions the network into two parts, each of which can reserve the community information as much as possible, and then the two parts are further recursively partitioned until the modularity cannot be further improved. While partitioning the network, we use the approach of matrix decomposition so that the row space of the associated matrix of the networks can be approximated as close as possible and the community information can be reserved as much as possible. Experimental results show that our algorithm can not only accurately identify the number of communities of a network, but also obtain higher quality of community partitioning without previously known parameters.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Wireless and Mobile Computing (IJWMC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com