A modified range (R) chart to monitor process dispersion of autocorrelated data Online publication date: Sat, 17-May-2014
by Sukhraj Singh; D.R. Prajapati
International Journal of Productivity and Quality Management (IJPQM), Vol. 13, No. 1, 2014
Abstract: The range (R) charts are widely used in industries to monitor the process dispersion. Monitoring process dispersion is as important as monitoring the process mean. In actual practice, some process outputs are correlated, the performance of R chart may have adverse effect on it. The performance of the chart is measured in terms of the average run length (ARL), which is the average number of samples before an out-of-control signal is obtained. Ultimately, the performance of these charts may be suspected due to autocorrelation. In this paper, an attempt is made to counter the autocorrelation by designing the new R chart named modified R chart, based on sum of chi-squares. The performance of this modified R chart is computed for sample sizes of 3 and 5. It is observed that when the level of correlation (Φ) increases, the performance of the modified R chart deteriorates. Moreover, the modified R chart for sample size of three and five is compared with adaptive R charts, suggested by Lee (2011) at zero level of correlation (Φ). It is found that modified R chart performs better than adaptive R charts for most of the cases.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Productivity and Quality Management (IJPQM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com