Lattice Boltzmann simulation of natural convection with temperature-dependent viscosity in a porous cavity
by Zhaoli Guo, T.S. Zhao
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 5, No. 1/2, 2005

Abstract: Laminar convection of a fluid with a temperature-dependent viscosity in an enclosure filled with a porous medium is studied numerically based on a Lattice Boltzmann method. It is shown that the variation in viscosity has significant influences on both flow and heat transfer behaviours. In comparison with the results for constant viscosity, the fluid with variable viscosity exhibits a higher heat transfer rate. The non-Darcy effects on fluid flow and heat transfer are also studied for both constant and variable viscosity.

Online publication date: Wed, 08-Dec-2004

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com