CFD modelling of nitrogen injection in a longwall gob area Online publication date: Wed, 10-Sep-2014
by Liming Yuan; Alex C. Smith
International Journal of Mining and Mineral Engineering (IJMME), Vol. 5, No. 2, 2014
Abstract: This paper describes computational fluid dynamics (CFD) simulations conducted to investigate the effectiveness of N2 injection in an active panel and a sealed longwall gob area to prevent and suppress spontaneous heating of coal using various injection locations and flow rates. In the active panel simulations, a single longwall panel with a bleederless ventilation system was simulated. The spontaneous heating of crushed coal from pillars was simulated and N2 was injected from different locations on the headgate side and through boreholes from the surface. The N2 injection rate at each location was varied between 0.18 m3/s and 0.94 m3/s (380 and 2000 cfm). In the sealed longwall simulations, seal leakage rate was varied to determine its effect on N2 injection effectiveness. The results of this study should aid mine ventilation engineers in developing more effective N2 injection strategies to prevent and control spontaneous heating of coal in underground coal mines.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mining and Mineral Engineering (IJMME):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com