A joint framework for missing values estimation and biclusters detection in gene expression data Online publication date: Wed, 29-Apr-2015
by Kin-On Cheng; Ngai-Fong Law; Yui-Lam Chan; Wan-Chi Siu
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 10, No. 6, 2014
Abstract: DNA microarray experiment unavoidably generates gene expression data with missing values. This hardens subsequent analysis such as biclusters detection which aims to find a set of co-expressed genes under some experimental conditions. Missing values are thus required to be estimated before biclusters detection. Existing missing values estimation algorithms rely on finding coherence among expression values throughout the data. In view that both missing values estimation and biclusters detection aim at exploiting coherence inside the expression data, we propose to integrate these two steps into a joint framework. The benefits are twofold; the missing values estimation can improve biclusters analysis and the coherence in detected biclusters can be exploited for accurate missing values estimation. Experimental results show that the bicluster information can significantly improve the accuracy in missing values estimation. Also, the joint framework enables the detection of biologically meaningful biclusters.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com