Exergy analysis of natural gas/DME combustion in homogeneous charge compression ignition engines (HCCI) using zero-dimensional model with detailed chemical kinetics mechanism
by Samad Jafarmadar; Nader Javani
International Journal of Exergy (IJEX), Vol. 15, No. 3, 2014

Abstract: In the present work, a single zone combustion model with detailed chemical kinetics is developed to study the effect of dimethyl ether (DME) concentration on the combustion of natural gas from second law point of view in a homogeneous charge compression ignition (HCCI) engine. The code can predict all exergy terms in the cylinder with crank angle during a closed cycle. The chemical kinetics mechanism includes 83 species and 360 reactions. Exergy analyses is employed for different DME concentration and initial charge temperature at constant natural gas (NG) concentration. The results show that when the excess air ratios of DME increases from 6.5 to 14.7 at a constant air ratio of NG = 7.1), exergy efficiency increases 30.2% and irreversibility decreases 15.4%. Also, an increase in initial temperature, decreases the irreversibility and increases the heat loss exergy.

Online publication date: Thu, 30-Apr-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com