Exergy analysis of DSG parabolic trough collectors for the optimal integration with a combined cycle Online publication date: Tue, 03-Feb-2015
by Hassan Nezammahalleh
International Journal of Exergy (IJEX), Vol. 16, No. 1, 2015
Abstract: A comprehensive energy and exergy analysis was conducted for various components of a direct steam generation (DSG) parabolic trough solar collector field under nominal operating conditions to assess performance of the components and to optimally integrate them with a thermal system. The solar field was modelled mathematically to compute thermal loss and consequently the thermodynamic efficiencies. To minimise inefficiencies in the solar field and to integrate it optimally with a reference combined cycle, the solar field was coupled to the bottoming cycle of the power plant. The solar energy was exploited in this conceptual integrated solar combined cycle (ISCC) to preheat the condensate water and to evaporate the water from economiser up to the prescribed quality of 0.8 in a once-through DSG system. This ISCC was further investigated for optimal design variables including inlet temperature of the water to the solar field and bleed pressure of the steam to deaerator.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com