Real-time water demand forecasting system through an agent-based architecture Online publication date: Tue, 26-May-2015
by Borja Ponte; David De la Fuente; Raúl Pino; Rafael Rosillo
International Journal of Bio-Inspired Computation (IJBIC), Vol. 7, No. 3, 2015
Abstract: Water policies have evolved enormously since the Rio Earth Summit (1992). These changes have led to the strategic importance of water demand management. The aim is to provide water where and when it is required using the fewest resources. A key variable in this process is the demand forecasting. It is not sufficient to have long term forecasts, as the current context requires the continuous availability of reliable hourly predictions. This paper incorporates artificial intelligence to the subject, through an agent-based system, whose basis are complex forecasting methods (Box-Jenkins, Holt-Winters, multi-layer perceptron networks and radial basis function networks). The prediction system also includes data mining, oriented to the pre and post processing of data and to the knowledge discovery, and other agents. Thereby, the system is capable of choosing at every moment the most appropriate forecast, reaching very low errors. It significantly improves the results of the different methods separately.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com