Heat load prediction in district heating and cooling systems through recurrent neural networks
by Masatoshi Sakawa; Takeshi Matsui
International Journal of Operational Research (IJOR), Vol. 23, No. 3, 2015

Abstract: Heat load is the amount of cold water, hot water and steam used for air conditioning in a district heating and cooling system. Heat load prediction in district heating and cooling (DHC) systems is one of the key technologies for economical and safe operations of DHC systems. The heat load prediction method through a simplified robust filter and a three-layered neural network has been used in an actual DHC plant on a trial basis. Unfortunately, however, there exists a drawback that its prediction becomes less accurate in periods when the heat load is non-stationary. In this paper, for adapting the dynamical variation of heat load together with a new kind of input data in consideration of the characteristics of heat load data, a novel prediction method through a recurrent neural network is presented. Several numerical experiments with actual heat load data demonstrate the feasibility and efficiency of the proposed method.

Online publication date: Fri, 29-May-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Operational Research (IJOR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com