A novel particle swarm optimisation with hybrid strategies Online publication date: Mon, 08-Jun-2015
by Rongfang Chen; Jun Tang
International Journal of Computing Science and Mathematics (IJCSM), Vol. 6, No. 3, 2015
Abstract: Particle swarm optimisation (PSO) is an efficient optimisation technique, which has shown good search performance on many optimisation problems. However, the standard PSO easily falls into local minima because particles are attracted by their previous best particles and the global best particle. Though the attraction can accelerate the search process, it results in premature convergence. To tackle this issue, a novel PSO algorithm with hybrid strategies is proposed in this paper. The new approach called HPSO employs two strategies: a new velocity updating model and generalised opposition-based learning (GOBL). To test the performance of HPSO, 12 benchmark functions including multimodal and rotated problems are used in the experiments. Computational results show that our approach achieves promising performance.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com