A novel filter feature selection method for paired microarray expression data analysis Online publication date: Fri, 26-Jun-2015
by Zhongbo Cao; Yan Wang; Ying Sun; Wei Du; Yanchun Liang
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 12, No. 4, 2015
Abstract: In recent years, a large amount of microarray data sets are produced with tens of thousands of genes. Feature selection has become a very sharp tool to select the informative genes. However, few feature selection methods consider the effect of paired samples, which are much more considered in the experiments of these years. Here, we propose a new feature selection method for paired microarray data sets analysis. It uses the fold change instead of the subtraction in the original approach, measures the statistical significant using the q-value of False Discovery Rate (FDR) and also decreases the influence of redundant genes. We compare the proposed method with another six existing methods in predict performance, stability of gene lists, functional stability and functional enrichment analysis using six kinds of paired cancer data sets. Comparison results show that our proposed method achieves better effectiveness, stability and consistency when it is applied to paired data sets.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com