miRNA target recognition using features of suboptimal alignments
by Ali Katanforoush; Ehsan Mahdavi
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 13, No. 2, 2015

Abstract: MicroRNAs (miRNAs) are a class of short RNA molecules that regulate gene expression by binding directly to messenger RNAs. Conventional approaches to miRNA target prediction estimate the accessibility of target sites and the strength of the binding miRNA by finding optimums of some energy models, which involves O(n³) computations. Alternatively, we narrow down potential binding sites of miRNAs to suboptimal hits of a pairwise alignment algorithm called Fitting Alignment in O(n²). We invoke a same algorithm, once for all candidate sites to measure the site accessibilities. These features are applied to a binary classifier being learned to predict true associations between miRNAs and target genes. Training the classifier requires the negative samples indicating non-affected genes. The experiments verifying such negative associations have been rarely performed, so we exploit tissue-specific gene expression data to impute the negative associations. The recall rate of our method is above 70% (at precision 85%).

Online publication date: Mon, 31-Aug-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com