Distinct adoption of k-nearest neighbour and support vector machine in classifying EEG signals of mental tasks
by Kusuma Mohanchandra; Snehanshu Saha; K. Srikanta Murthy; G.M. Lingaraju
International Journal of Intelligent Engineering Informatics (IJIEI), Vol. 3, No. 4, 2015

Abstract: In this paper, an attempt is made to apply few conventional methods of EEG feature extraction and classification methods and compare their performance for a specific task. Two different feature extraction and classification methods are implemented to classify the mental tasks of EEG signals from a known dataset. For this purpose, the auto regression model and the wavelet transform is used as feature extraction. A combined EEG feature vector is also evaluated on the classification accuracy. The features extracted from these methods are applied to the k-nearest neighbour and support vector machine classifiers separately. Each subject has ten trials of each mental task, in which five trials of each task is used for training the system. The remaining five tasks are used for testing the system. Four different trial combinations of each task are made. The results are evaluated using the confusion matrix. Experimental results specify that each method has specific advantages and disadvantages and is suitable for EEG signal analysis for a specific application.

Online publication date: Mon, 16-Nov-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Engineering Informatics (IJIEI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com