A hybrid ARMA-Legendre polynomial neural network and evolutionary H-infinity filter for the prediction of electricity market clearing price
by Sujit Kumar Dash
International Journal of Power and Energy Conversion (IJPEC), Vol. 6, No. 4, 2015

Abstract: A hybrid adaptive autoregressive moving average (ARMA) and Legendre polynomial neural network trained by an evolutionary H-infinity filter is presented in this paper for predicting short-term electricity prices in a deregulated market. The proposed model comprises a linear autoregressive (AR) part and nonlinear moving average (MA) part obtained through the use of Legendre polynomial basis functions. The Legendre polynomial functional block helps to introduce nonlinearity by expanding the input space to higher dimensional space through basis functions without using any hidden layer like the multilayered perceptron (MLP) network. Instead of using the standard forward-backward (FB-LMS) algorithm for learning the weight parameters of the ARMALEG (hybrid ARMA and Legendre network) a robust H-infinity filter is used which is superior to the widely used extended Kalman filter in terms of handling uncertain noise covariances resulting in fast convergence and tracking. Further to improve the accuracy, the H-infinity filter parameters are optimised using a differential evolution (DE) strategy. The proposed method is tested on PJM electricity market and the residuals (MAPE) are compared with other forecasting methods indicating the improved accuracy of the approach and its suitability to produce a real-time forecast.

Online publication date: Mon, 14-Dec-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Power and Energy Conversion (IJPEC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com