A post-hoc genome-wide association study using matched samples Online publication date: Mon, 22-Feb-2016
by Jungsoo Gim; Sungkyoung Choi; Jongho Im; Jae-Kwang Kim; Taesung Park
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 14, No. 3, 2016
Abstract: Genome-wide association studies have identified many causal candidate loci associated with common complex phenotypes, such as type-2 diabetes and obesity. However, most of these studies have been drawn from non-randomised case/control experiments, where the units exposed to one group generally differ from those exposed to the other group. The aim of this study was to address the issues arising from non-randomised case/control experiments. In order to achieve this, we have proposed a post-hoc association analysis using subsets of samples selected by the proposed matching technique. This method was applied to two different binary traits, type-2 diabetes and obesity, in Korean subjects. It identified nine and two additional variants for type-2 diabetes and obesity, respectively, which were not identified using the total dataset. Our study demonstrates that the proposed a post-hoc genome-wide association analysis can determine additional candidate causal variants responsible for common complex phenotypes.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com