Evaluation of scale-adaptive simulation for transonic cavity flows Online publication date: Mon, 28-Mar-2016
by Savio V. Babu; George Zografakis; George N. Barakos; Alexander Kusyumov
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 8, No. 2, 2016
Abstract: Scale-adaptive simulations of transonic cavities with and without doors are presented in this paper. Results were compared with detached-eddy simulations for cavities with length-to-depth ratios of 5 and 7. The Mach and Reynolds numbers (based on the cavity length) were 0.85 and 6.5 × 106, respectively, and the grid sizes were 5.0 million for the clean cavity with doors-off and 5.5 million for the clean cavity with doors-on. Instantaneous Mach number contours showed that the shear layer broke down for both the doors on and doors off cases and that the flows had a high level of unsteadiness inside them. The two L/D ratios of cavities were seen to have similar acoustic signatures reaching maximum sound levels of 170 dB. Spectral analyses for the cavities without doors revealed that by changing the length-to-depth ratio from five to seven, the dominant acoustic modes at the front and rear of the cavities were shifted from the second and third modes to the first and second modes respectively. Proper orthogonal decomposition was used to reduce the data storage using modes constructed from flowfield snapshots taken at regular intervals.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com