Effective statistical features for coding and non-coding DNA sequence classification for yeast, C. elegans and human
by Alan Wee-Chung Liew, Yonghui Wu, Hong Yan, Mengsu Yang
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 1, No. 2, 2005

Abstract: This study performs a quantitative evaluation of the different coding features in terms of their information content for the classification of coding and non-coding regions for three species. Our study indicated that coding features that are effective for yeast or C. elegans are generally not very effective for human, which has a short average exon length. By performing a correlation analysis, we identified a subset of human coding features with high discriminative power, but complementary in their information content. For this subset, a classification accuracy of up to 90% was obtained using a simple kNN classifier.

Online publication date: Sat, 06-Aug-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com