Novel extraction and tumour detection method using histogram study and SVM classification Online publication date: Wed, 10-Aug-2016
by Sara Sandabad; Achraf Benba; Yassine Sayd Tahri; Ahmed Hammouch
International Journal of Signal and Imaging Systems Engineering (IJSISE), Vol. 9, No. 4/5, 2016
Abstract: In this article we present a new method for detecting and segmenting brain tumour regions weighted brain MRI in T1 (with contrast). This method consists of three main stages: (i) extracting the region of interest (brain) using our EMBE method; (ii) study and histogram analysis of the MRI image to create learning and initialise the classification algorithm will be applied later to retrieve and locate the tumour; (iii) tumour detection and classification using SVM into two classes: tumour class and no-tumour class. Our method will be completed by a characterisation of the tumour area by determining its geometric properties. This work will facilitate later the immense task radiologists to the significant number of MRI images have to deal with daily, and may also be a way for future researchers in order to develop other new methods and develop this research so interesting.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Signal and Imaging Systems Engineering (IJSISE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com